3D打印中的几何计算简介
3D打印的本质在于分层制造,其中切片计算非常重要。起初,切片计算采用分层厚度相等,由此会产生模型精度与打印时间之间的矛盾:分层厚度小,模型精度有保证,但打印时间长;反之,打印时间缩短,但易导致模型阶梯误差大。这使得自适应库度方法逐渐流行。在机械快速成型领域中,许多学者对切片计巧己做过深入研巧IW。从这些研巧成果来看,切片计算方法若按研巧对象来分,可分为:
- 网格切片计算:由于STL格式的网格模型是3D打印业内所用的标准文件类型,因此很多切片计算对象主要以STL格式的网格类型模型为主。
- 直接切片计巧:由于原始3D模型在转化为STL格式模型数据时,会产生转换误差,因此还有不少研巧考虑直接在原始的3D模型数据上执行切片计算。
目前,按照打印路径类型的不同,打印路径生成方法主要可分为5种:
- 平行扫描:该方法所生成的路径大多相互平行,两条平行线间首尾相接,形成一个Z字形状的来回路径,因此也常被称为Z字巧径(Zigzagging)。
- 轮巧平行扫搪:所生成的路径由截面轮度的一系列等距线(Ofifeettingcurve)所组巧。
- 分形扫描扫描路径由一些短小的分形巧线组成。
- 星形发散扫推稱切片从中也分为两巧分,先后从中也向外填充两个巧分,填充线为平行X或Y轴扫巧线,或45度换线。
- 基于Voronoi酉的扫描巧径twwi:根据切片轮廓的Voronoi图,由一定的偏巧量在各边界元素的Voronoi区域内生成该元素的等距线,连接不同元素的等距线,得到一条完整的扫描路径,再逐步改变偏移量就可得到整个扫描区域的所有规划路径。
针对大物体打印问题,Chen等则给出了另外一种表面近似表示的方案:将所给3D模型通过表面分割、简化、变形方法转化为一个由少量多边形组成的网格分片近似表示,再将所得到的网格分解为平面片的组合,并生成平面片之间的连接头用来拼装各个平面片。在此基础上,通过激光切割机或3D打印制作出每一个多边形平面片,最后将这些面片拼装成一个与原3D模型外形相近似的实物对象。这种方法目前尚未考虑内部支挣结构处理,同时该方法对细长特征的模型处理结果不好。
针对分割问题,中国矿业大学的Hao等给出了一个基于曲率的模型分割方法。该方法首先对模型表面进行曲率分析,提取出模型的特征边,并据其构建特征环。W此为基础,在其中选择合适的特征环来将原模型分解为小而简单的子模型组合。这种分割方法的前提是模型表面具有明确的特征信息,因此该方法适用范围有限。
在日常生活中,人们很專欢盒子形状的物体,因为这类形状既规则,又可方便地被装箱运输,同时还可^心作为构成其它形状的基本元素。但是,如何将一个物体分解并使其可折叠成一个盒子状的对象,是一个很有挑战性的任务。最近,Zhou等就给出一种通过一系列折叠变换过程将一个H维物体变成一个盒子形状对象的方法。该方法会生成一个单一的、互相连接的对象,这种对象可以实际地通过不断地折叠从一种形状变为另一种形状,直到最终变为一个类似盒子形状的物体。该方法首先将H维物体分割成一些体素,再在这些体素中通过H步来生成一颗可W从所给输入的形状折叠成为目标形状的体素树,文中通过3D打印成功地展示与验证了若干实验结果。
注意到锥形物体在打印时既具有良好的稳定性又无需支巧的良好特性,Hu等提出一种可W将3D打印模型自动分解成一个个近似锥形结构的塔式分割算法。在此基础上,Chen等给出了一个Dapper算法来解决犯打印中的DAPDecompose-and-Pack)问题,其算法的核也仍是将3D模型分解为锥形结构的构件。Yao等则基于水平集方法研巧了3D打印模型的分割与装箱问题。
Wang等从优化打印方向来提巧各个分块部分的表面打印质里角度,考虑了分割问鹿。该方法首先从大批候选打印方向中通过支持向鱼机(SupportVector Machine,SVM)方法找出能反映模型主要方向的若干打印方向,并这些主要打印方向来初始化分割模型。么后再根据一堅约束条件对其调整化化,得到最终分割结果。最后,支中还给出分割后物体的装配次序。
Li等则家具模型为对象,研究通过分割将其变为可折金模型,从而达到节省空间的目的。而Vanek等则观察到打印物体的外壳比打印整个物体要省时省材料,结合装箱体积考巧,他们巧出了一个面向装箱体积优化的外壳分割方法。该方法先巧模型的外壳抽取出来,再对外壳进行分割。在分割时,该方法会考巧连接区域的大小、分片体积等因素。在此基础上,将所有分片紧密化巧列装箱,并对装箱布麗结果进行优化,使巧装箱体积最小同时所巧支撐材料最小。